Common Entrance Examination - 2018 for Admission in B. Tech/B.Pharmacy/B.Pharmacy (Ayurveda) (Physics, Chemistry & Mathematics or Biology)

Question Booklet No.:-

12678

Duration: Three Hours

Maximum Marks: 300

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. Do not open the seal of the question booklet until you are asked to do so by the invigilator.
- 2. OMR answer-sheet will be supplied by the Centre Superintendent for answering the questions.
- 3. Use blue/black ink ball pen only to darken the appropriate circle/oval in the OMR answer-sheet. No sophisticated pens are allowed.
- 4. Darken one circle/oval deeply for each question in the OMR answer-sheet, as faintly darkened circle might be rejected by the scanner.

 ☑ Wrong ✓ Correct
- 5. This question booklet contains **32** pages including blank pages for rough work. After you are permitted to open the seal, please check all pages and report discrepancies, if any, to the invigilator on duty.
- 6. There are a total of 150 questions carrying 300 marks. All these questions are of objective type. Each question has only one correct answer.
- 7. Question1 to 50 belong to Physics, question 51 to 100 belong to Chemistry, question101 to 150 belong to Mathematics or Biology and each question carry two marks. You are advised to attempt questions from one subject, either Mathematics or Biology. However, the question belonging to Physics and Chemistry subjects are compulsory for all.
- 8. Rough work can be done on the question paper itself. Blank pages are provided at the end of the question booklet for rough work.
- Do not fold the OMR answer-sheet neither put any mark here and there to avoid rejection by the scanner.
- Write roll number carefully on the OMR answer-sheet and darken the appropriate circle/oval properly.
- 11. Before dealing with the question paper, fill-up the required information with blue/black ball pen correctly both in the question booklet and the OMR answer-sheet.
- 12. Mobile telephones are not allowed inside the examination hall.
- 13. The question booklet will be retained by the candidate after the entrance test is over.
- 14. Before the start of the examination, write your name and registration number in the space provided below using a blue/black ink ball point pen.
- 15. Two marks shall be awarded for each correct answers and 0.5 marks shell be deducted for each wrong answer.

1	The	e radius of nucle	us is $R = R_0 A^{1/3}$, where	A is mass number. Th	e dimensions of R. is
	(A)	[M L T ⁻²]	(B) [Mº L T⁰]		
2.	lf ei	nergy of photon	is E α h ^a c ^b λ ^d where	h is Planelds, consta	nt, c = speed of light and
	$\lambda =$	wavelength of p	hoton. Then the value o	of a, b and d are	nt, c - speed or light and
	(A)	1, 1, 1	(B) 1, -1, 1		(D) None of these
3.	A pa	article is revolvir onstant?	ng in a circle with increas	sing its speed uniform	nly. Which of the following
	(A)	Centripetal acc	celeration	(B) Tangential acc	eleration
	(C)	Angular accele	eration	(D) None of these	
4.	A 7 I	(g object <mark>is s</mark> ubj	ected to two forces (in r		
	The	magnitude of re	esulting acceleration in r	ns⁻² will be ⋤౯ [⋘]	
	(A)	5.3	(B) 4	(©) 3.1	(D) 2
5.	A pa	rticle of mass i	n is fixed to one end of about its other end. Th	of a light rigid rod of ne minimum speed of	length I and rotated in a the particle at its highest
	(A)	Zero	(B) √gl 1 = 2 ? √g	(C) √1.5 gl	(D) √2 gl
6.	A stor	ne of mass 0.3 at a speed of 6	kg attached to a 1.5 r meter per second (m/s	m long string is whirles). The tension in the	ed around in a horizontal string is
	(A) 1	0 N	(B) 20 N N + 0	(C) 7.2 N	(D) None F
-					ith a uniform velocity of 2
			ctors, then the value of		
			1 2	(C) $\vec{B} \times \vec{A}$	(D) $\vec{A} \times \vec{B}$
). T	he co	mponent of ve	$\cot \vec{A} = 2\hat{i} + 3\hat{j}$ along the		I TO
(4)	$\sqrt{3} \frac{5}{\sqrt{2}}$		(B) 10√2	(C) 5√2 (R)	(D) 5
				CE	

8.

9.

[2] [B. Tech/B.Phar./B.Phar.-Ayur.]

10) Th						
10	, in	e potential energ	gy of two atoms see	Darated by a	ا د داد	A	
	is a	a positive consta	gy of two atoms sep ant. What is the forc	e exerted by a	distance x is	given by $\cup = \frac{-A}{x^6}$,	where A
	(A)	<u>-7A</u>	ant. What is the forc	e exerted by	one atom on	another atom?	
11		X'	$(B) \frac{OA}{\sqrt{7}}$	(C)	_6A_	(D) <u>5A</u>	
11.	VVI		ing is not conserve	d in inelastic	Collision2	, X ₈	
					, 0011131011 ;	7 120 2672	> (%)
	(B)	Kinetic energy			an p		
	(C)		um and Kinetic ene	rgy	\mathcal{O}^*		
	(D)	Neither Mome	entum nor Kinetic er	nergy			
12.	A ro	od elongates by	ℓ when a body of n	nass M is su	spended from	it. The work don	e is
2.	(A)	Mgℓ	(B) $\frac{1}{2}$ Mg ℓ	(C)	2 Mgℓ	(D) Zero	
13.		olid sphere rolls inations	down two differen	t inclined pl	anes of the sa	ame height but o	f different
	(A)	In both cases	the speeds and tim	e of descen	d will be same		
	(B)		ill be same but time			ent	
	(C)		ill be different but ti			me	111/2
	(D)		me of descend both			K=	= ½w/2
14.			heavy body have				
	(A)	Light Body		(B)	Heavy Body		
	(C)	Both have sam	ne		None of thes	e To ensine	
15.	` '		es a horizontal circ	, ,			ical funnel
15.			lane of the circle a				
	partio					an afire	1 3 4
	(A)	2 m/s		(B)	4 m/s	1万元	7.10×
	1.9	16 m/s		(D)	1 m/s	17/2	7
	` '		system. If T₁ an				
			ne centre of mass			realiza a de la companya de la comp	
						(D) Insuffi	cient data
			(B) $T_1 = T_2$	No.			
			around the sun eing a positive co		lar orbit of	radius "a" with	a period of
		= Ka ^{2/3}	(B) $T = Ka^{3/2}$	(C)	$T = Ka^2$	(D) T = Ka	a^3
			rol (D. Taab)	D Dhor /D Di	or Avur I		

 The time period of a satellite the satellite is increased to 4 	of earth is 5 times the pre	hours. If the septions value the ne	aration between the earth and ew time period will become
(A) 10 hours (B) 80		(C) 40 hours	(D) 20 hours
19. A person will get more quanti		kg – wt at	Da & SXT
(A) poles			DXT
(B) at latitude of 60°			Property and a standing of
(C) equator			
(D) satellite			
Suppose there is a hole in a would	copper plate	. Upon heating th	ne plate, diameter of the hole
(A) always increase			
(B) always decrease			
(C) remains the same			,
(D) None of the above			
Find the depth at which an air Given surface tension of water			
(A) 2 cm		(B) 4 cm	
(C) 10 cm		(D) 12 cm	
22. When temperature is increased	the frequenc	cy of organ pipe	
(A) increases			
(B) decreases		1" A	
(C) remains same			
(D) Nothing can be said			
23. When a sound wave travels from	m water to air	it, objects	
(A) bends towards normal			
(B) bends away from normal	· f · · fol		
(C) may bend in any direction			
(D) data insufficient			
	ania matian .	with a fragulation	f Th. £2
 A particle executes simple harm the potential energy oscillates is 	onic motion	with a frequency	1. The frequency with which
(A) f (B) $\frac{f}{2}$		(C) 2f	(D) Zero
and the second second			

23.

25.	A column of water 60 cm high supports a 32 density of the liquid?	em column of an unknown liquid. What is
	(A) $1.875 \times 10^{-3} \text{ kg m}^{-3}$ (B)	s) 3.54 × 10 ⁴ kg m ⁻³
	(C) $1.875 \times 10^3 \text{ kg m}^{-3}$ (E	0) 8 × 10⁵ kg m ⁻³
26.	If a charge q is placed at corner of a cube then	flux passes through the cube is

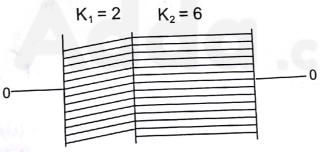
(A) $\frac{q}{\epsilon_0}$ (B) $\frac{q}{24\epsilon_0}$ (C) $\frac{q}{48\epsilon_0}$ (D) $\frac{q}{16\epsilon_0}$

If charge density varies as $\rho \alpha r^n$ where r is distance from axes of cylinder then electric field 27. inside the cylinder varies as

(B) r-n

(C) r^{n+1}

(D) r^2


Find the energy of a conducting sphere having radius R and total charge q

(A) $\frac{q^2}{4\pi \in {}_0R}$ (B) $\frac{q^2}{2\pi \in {}_0R}$ (C) $\frac{6}{5} \frac{q^2}{8\pi \in {}_0R}$ (D) $\frac{q^2}{8\pi \in {}_0R}$

Poisson's equation is given by

(A) $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ (B) $\vec{E} = -\nabla V$ (C) $\nabla^2 V = 0$ (D) $\nabla^2 V = \frac{-\rho}{\epsilon_0}$

A parallel plate capacitor has two layers of dielectrics as shown in figure. This capacitor is connected across a battery. Then the ratio of potential difference across the dielectric layer is

(A) $\frac{4}{3}$

(B) $\frac{1}{2}$

(C) $\frac{1}{3}$

The susceptibility of a magnetism at 300 K is 1.2 × 10⁻⁵. The temperature at which 31. susceptibility increases to 1.8 × 10⁻⁵ is

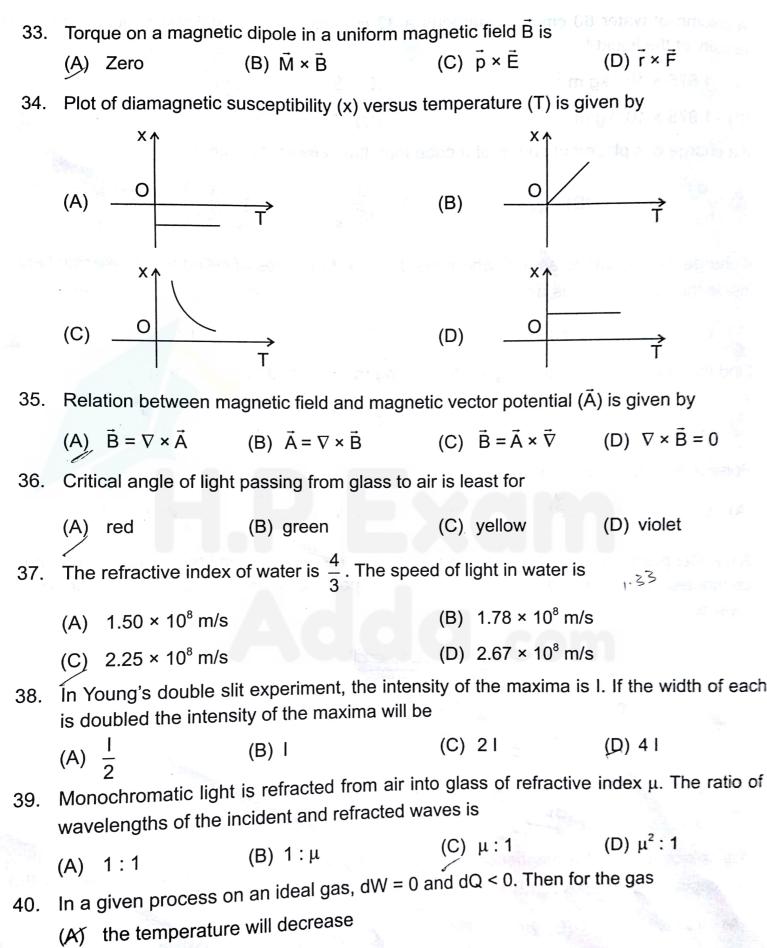
150 K (A)

(B) 200 K

(C) 250 K

(D) 20 K

Susceptibility of ferromagnetic substance is


> 1

***** (B)/<1

(C) Zero

(D) 1

[5] [B. Tech/B.Phar./B.Phar.-Ayur.]

- the volume will increase (B)
- the pressure will remain constant (C)
- the temperature will increase

44	1. The root many	
41	temperature is doubled and the hydrogen mean square speed (rms) will become	molecules at a certain temperature is v. If the gas dissociates into atomic hydrogen, the root
	(A) $\frac{v}{4}$ (B) $\frac{v}{2}$	(6) 11:
42.	7	(C) $1 v$ (D) $4 v$
72.	process, if fleat is supplied	· · · · · · · · · · · · · · · · · · ·
		(B) Decrease
	(C) Remains same	(D) varies exponentially
43.	the following combination has the dimension	ance, capacitance and resistance which one or one of frequency?
	(A) $\frac{1}{RC}$ (B) $\frac{1}{LC}$	(C) $\frac{L}{R}$ (D) $\frac{C}{L}$
44.	An X-ray tube is operated at 20 kV. The cu	it off wavelength is
	(A) 0.89 Å (B) 0.75 Å	(C) 0.62 Å (D) None of these
45.	The frequency of K_{α} line of a source of ato	mic number z is proportional to
	(A) z^2 (B) $(z-1)^2$	(C) $\frac{1}{z}$ (D) z
46.	Post of the second	Zapan Wasanah an'nyo salik
	(A) higher reverse voltage	$\lambda = \frac{\mathbf{c}}{V}$
	(B) lower reverse voltage	
	(C) lower forward voltage	the subset of the fall problem of the
	(D) higher forward voltage	
47.	How many NAND gate are required to mal	ke an OR gate using NAND gate?
th j.	(A) 2 (B) 1	(C) 4 (D) 3
48.	How does the effective power radiated by	
40.		
	$(A) \rho \alpha \left(\frac{1}{\lambda}\right)^4 \qquad (B) \rho \alpha \lambda^2$	(C) $\rho\alpha\left(\frac{1}{\lambda}\right)$ (D) $\rho\alpha\left(\frac{1}{\lambda}\right)$
49.	Dioptre is the unit of	
49.	(A) D	(B) focal length
	(A) Power of lens	(D) None
	(C) Ionosphere	- 1 125 1 중요합 - 125 - 125 (報)
50.	Name the device which will convert DC int	
	(A) Rectifier	(B) Amplifier
	(C) Oscillator	(D) Condenser

of

CHEMISTRY

51.	The Avogadro	number o	r a mole	represents:
-----	--------------	----------	----------	-------------

(A)
$$6.02 \times 10^{23}$$
 ions

(B)
$$6.02 \times 10^{23}$$
 atoms

(C)
$$6.02 \times 10^{23}$$
 molecules

(D)
$$6.02 \times 10^{23}$$
 entities

52. Which of the following is incorrect regarding Rutherford's atomic model?

- (A) Atom contains nucleus
- (B) Size of nucleus is very small in comparison to that of atom
- (C) Nucleus contains about 90% mass of the atom
- (D) Electrons revolve around the nucleus with uniform speed.
- 53. The triad of the nuclei that is isotonic:

(A)
$${}_{6}C^{14}$$
, ${}_{7}N^{14}$, ${}_{9}F^{19}$

(B)
$${}_{6}C^{14}$$
, ${}_{7}N^{15}$, ${}_{9}F^{17}$

(C)
$${}_{6}C^{14}$$
, ${}_{7}N^{14}$, ${}_{9}F^{17}$

(D)
$${}_{6}C^{12}$$
, ${}_{7}N^{14}$, ${}_{9}F^{19}$

55. The molarity of 720g of pure water is:

(A) Adsorption isobar

(B) An isostere

(C) Adsorption isotherm

(D) All of the above

7. The standard reduction potential of Pb and Zn electrodes are – 0.126V and – 0.763V respectively. The cell equation will be:

(A)
$$Pb^{2+} + Zn \longrightarrow Pb$$

(B)
$$Pb^{4+} + 2Zn \longrightarrow Pb + 2Zn^{2+}$$

(C)
$$Zn^{2+} + Pb \longrightarrow Zn + Pb^{2+}$$

(D) None

58.	The ion which does not have configuration of argon (Ar) is:				
	(A)				
	(C)	Cl	(B)	K Ca ²⁺	
59.	The	one that exist as dimer is:	(D)	Ca	
	(A)	Aluminium iodide			
	(B)	Magnesium chloride			
	(C)	Aluminium chloride			
	(D)	Aluminium bromide			
60.	Dich	nromate ions in alkaline medium exist as:			
		CrO 2-	(B)	CrO ₂	
	(C)	Cr ³⁺	(D)	CrO₃ Cr⁴¯	
61.		MgI is an organometallic compound due		OI CONTRACTOR	
	(A)			C. I bond	
	` '	C–Mg bond		C–I bond C–H bond	
62.		ich of the following is paramagnetic?	(0)	o mbolid	
	(A)		(B)	K ₃ [Fe(CN) ₆]	
	(C)	Ni (CO) ₄		[Co(NH ₃) ₆] Cl ₃	
63.	Ozo	one does not act as:			
	(A)	Reducing agent	3)		
	(B)	Oxidizing agent			
	(Ć)	Acid		W. 11 195	
	(D)	Bleaching agent			
64.	The	e shape of XeF₄ is:			
	(A)	Tetrahedral			
	(<u>B</u>)	Square Planar			
	(C)	Octahedral			
	(D)				
65.	The	e gas most difficult to liquefy is:	(D)	No	
	(A)	He	(B)		
	(C)	Xe	(D)	Ar	

[9] [B. Tech/B.Phar./B.Phar.-Ayur.]

66. The IUPAC name of following compound is:

CH₃CH CH₂CH₃

- (A) 2 Cyclopentyl butane
- (B) 2 Phenyl butane
- (C) 1 Butyl Cyclohexane
- (D) 3 Cyclopentyl butane
- 67. Anthracene is purified by:
 - (A) Filtration
 - (B) Crystallization
 - (C) Distillation
 - (D) Sublimation
- 68. Lindlar's Catalyst is:
 - (A) Pd + BaSO₄
 - (C) $AI_2O_3 + V_2O_3$

- (B) Pb + CaCO₃
- (D) $AI_2O_3 + AICI_3$

69. The reaction

$$C_6H_6 \xrightarrow{CO + HCI} C_6H_5CHO + HCI is known as$$

- (A) Gattermann Koch reaction
- (B) Friedel Craft reaction
- (C) Sandmeyer reaction
- (D) None
- 70. Tetrafluorothene is the monomer of:
 - (A) Orlon

(B) Polystyrene

(C) Teflon

- (D) PAN
- 71. For a first order reaction $A \longrightarrow B$, the reaction rate at reactant concentration of 0.01 M is found to be 2.0×10^{-5} mol L⁻¹ S⁻¹. The half life period of reaction is:
 - (A) 30 s

(B) 220 s

(C) 300 s

(D) 347 s

[10] [B. Tech/B.Phar./B.Phar.-Ayur.]

	M	
	-1)	-
(2	111	5
(not	' /	
(.	_	

72.	2. The value of rate constant of a pseudo first order reaction:									
	(A)	Depends on the concentration of reacta	nts p	resent in the small amount						
	(B)	Depends on the concentration of reacta	nts p	resent in excess						
	(C)	Is independent of concentration of reacta								
	(D)	Depends only on temperature								
73.	At th	At the equilibrium position in the process of adsorption:								
	(A)	$\Delta H > 0$		$\Delta H = T \Delta S$						
	(C)	$\Delta H > T \Delta S$	(D)	$\Delta H < T \Delta S$						
74.	Heat	ting pyrites to remove sulphur is called:		Liebbert Dige. The parties of the						
	(A)	Smelting	(B)	Calcination						
	(C)	Liquation	(D)	Roasting						
75.	Com	plete the reaction								
	XeF	$_4 + O_2 F_2 \longrightarrow ? + ?$								
	(A)	XeF ₆ + O ₂								
	(B)	XeF ₄ + 2 O ₂								
	(C)	XeO ₃ + 2F								
	(D)	XeF ₂ + O ₂								
76.	The	chemical formula of laughing gas is:	9_,							
	(A)	N ₂ O		2 NO						
	(C)			None						
77.	A br	own ring is formed in the ring test for NO ₃	on ion	. It is due to the formation of:						
	(A)	[Fe(H ₂ O) ₅ NO] ²⁺								
	(D)	Easo NO.		TO THE MEDICAL WASHING TO						
	(C)	$[Fe(H_2O)_4(NO)_2]^{2+}$		The many of the second of the						
	(D)	EASO H NO.								
	(D)	re are 14 elements in actinoid series, wh	ich o	f the following elements does not belo						
78.	The	re are 14 elements in actinoid somes, in his series?								
		U	(B)	Np						
	(A) (C)	Tm	(D)	Fm						
	5 j									
				- Carlotte						

79. Which shows the maximum magnetic	moment?	
(A) V^{3+}	(B) Cr ³⁺	
(C) Fe ³⁺	(D) 0 3+	VXI and Company
80. Which of the following compounds hav	/e peroxo linkago	
(1) 112003	(B) H ₂ SO ₅	
(C) $H_2S_2O_7$		tent to the second
81. For the hydrides of nitrogen family, in g (A) Stability decreases (B) Reducing activity decreases	joing down the group:	Harabay Maraba
decivity decreases		
t y stid drigle HEH increases		
, - July point increases		(0)
exhibit c	olour in aqueous solut	ion?
(A) La (Z=57)	(B) Ti ³⁺ (Z=22)	
(C) Lu ³⁺ (Z=71)	(D) Sc ³⁺ (7=21	
83. Which of the following species is not exp	pected to be a ligand?	
(A) NO	(<u>B</u>) NH₄ ⁺	
(C) NH ₂ CH ₂ CH ₂ NH ₂	(D) CO	
84. Which of the given options are correct for		former in annual con-
(A) d ² sp ² Hybridization	[[Fe(CN) ₆] complex?	10.14 VA
(B) sp ³ d ² Hybridization	(388 - 3 till)	
(C) Paramagnetic	1000	The second of the second secon
(D) Diamagnetic		是于 。 1 Han 1 Lan
85. For a reaction, A + B → C + D, d increases the reaction rate by 8 times and rate. The rate law is given as:	oubling the concentred doubling the only B	ration of both the reactants simply doubles the reaction
(A) $r = K [A]^{1/2} [B]^{1/2}$	(B) $r = [A] [B]^2$	MACAL A CO
(C) $r = K [A]^2 [B]$	(D) r = K [A] [B]	
6. Metabolic activities of cells are controlled b		
(A) Proteins (B) DNA	3. N. 1942 / 1942	
	(C) RNA	(D) Fats
[12] IP Took/P Pk	ou/D Dhan A	

86.

87.	Cap	rolactum polyme	rizes to give	· de la		
	(A)	Nylon – 6	9.10	A CONTRACTOR	(D)	Duna -
	(C)	Glyptal			(B) (D)	
88.	A dr	ug that is antipyr	etic as well a	e analgosio	(D)	Teflon
	(A)	Chloropromazir	ne hydrochlo	oride	15.	
	(B)	Paracetamol	3 - 3.110	ndo .		
	(C)	Chloroquine				
	(D)	Penicillin				
89.	Max	imum pKb value	is of			
	(4)	(011 011 111				900004 74 19-1
	(A)	(CH ₃ CH ₂) ₂ NH			(B)	// NH —//)
						300000000000000000000000000000000000000
	(C)	(CH ₃) ₂ NH			(D)	
	(0)	(0113/21111			(D)	NHCH₃
90.	Vinc	gar is diluta agu	oous salutia	and the state of		.1.5.9.6 W.
90.		egar is dilute aqu	eous solutio	on or	(B)	Benzoic acid
	(A) (C)	Ethanoic acid Citric acid			(D)	
01	` '	IUPAC name of	CH COCH	CH-CH- is:	(0)	Oxalio dola
91.				20112011313.		
	(A)	Methyl- n- prop	yi ketone			
34	(B)	2- Pentanone				
	(C)	3- Pentanone	Alkatana			
	(D)	n- Propyl- meth	lyr ketone	-to-rection o	fnho	nol with NaOH and CO. is:
92.	The	major product o	btained on I			nol with NaOH and CO₂ is:
of a	(A)	Benzoic acid	ou at off		military	Kadige which is a pambe gain. The men calminged with MA
	(B)	Salicylaldehyde	9 18004	1		The state of the s
	(C)	Salicylic acid		1		
	(D)	Phthalic acid		hal		
93.	Fort	he following:		walk to	r do i	Company and any sight of the
	a. I¯		b. Cl	hilioity would		Br
	The	increasing orde	of nucleop	milicity woul	d DC (R) I - < CI - < Br
	(A)	Cl ⁻ < Br ⁻ < l ⁻			(1)	o) I < Br < Cl
	(C)	Br ⁻ < Cl ⁻ < F ⁻			سالب	
			- 407 5	D Took/R Ph	ar /R	PharAvur.]

94.	Hov	many chiral compounds are possible or	mono	ochlorination of 2 - methyl buter a
	(A)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(B)	
	(C)	6 (chg) (c)	(D)	8
95.	Amo	ong the halides of the elements of group	, ,	
	(A)	BF ₃		AICI ₃
	(C)	BCI ₃	(D)	BBr ₃
96.	Arra	nge the following in decreasing order of	Ethoir	
		- Butane	uieii	bolling points.
		- Methyl butane		
		- Pentane		
	D. 2	,2 – Diethyl propane		
	(A)	A > B > C > D	(B)	B < C > D < A
	(C)	D > C > A > D	` '	C > B > D > A
97.	Whi	ch of the following gases is not a green I	1 200	
-	(A)	СО	(B)	O ₃ and a second
•	(C)	CH ₄	(D)	H₂O vapours
98.	The	IUPAC name for the compound:		
		ÇH₃	1	
	CH₃	C=CH—COOH is		
	(A)	2- Methyl but -2- enoic acid		Company Table
	(B)	3- Methyl but -3- enoic acid		Andone Telling
	(C)	3- Methyl but -2- enoic acid		
	(D)	2- Methyl but -3- enoic acid		
99.	Whe	n Zeolite which is hydrated sodium alu um ions are exchanged with which of the	ıminur e follov	n silicate is treated with hard water, the wing ions?
	(A)	H ⁺	(B)	Mg ²⁺
	(C)	Cu ²⁺	(D)	SO ₄ ⁻² 500 23dla (100 4) (C.)
100	The a	alkali metals are low melting. Which of t	he foll	owing alkali metals is expected to melt if
, , ,	the re	oom temperature rises to 30°C?		
	(A)	Na Na	(B)	
	(C)	Rb	(D)	
		Dha	r/B Ph	arAvur.l

MATHEMATICS

101.	Let $A = \{x : x \in \mathbb{R}, x > 4\}$ and $B = \{x : x \in \mathbb{R}, x < 1\}$	5}. Then A ∩ B equals to
	(A) (4,5]	(B) (4,5)
	(C) [4,5)	(D) [4,5]
102.	If R is a relation on a finite set having n element	
	(A) 2 ⁿ (G)	(B) 2 ^{n²}
	(C) n ²	(D) n^n
103.	The range of the function $f(x) = \frac{x}{ x }$ is	
	(A) ℝ\0	
	(B) ℝ \ {-1, 1}	
	(D) none of these	
		M 4 110 121 111
104.	If $f: [-2, 2] \to \mathbb{R}$ is defined by $f(x) = \begin{cases} -1, f \\ x - 1, \end{cases}$ and $f(x) = x$ equals to	for $-2 \le x \le 0$ for $0 \le x \le 2$, then the set $\{x \in [-2, 2] : x \le 0\}$
	(A) {-1}	(B) {0}
	$(\mathcal{Q}) \ \left\{ \frac{-1}{2} \right\}$	(D)
105.	If $\frac{1-ix}{1+ix} = a+ib$, then a^2+b^2 equals	
	(A) 1	(B) -1
	(C) 0	(D) none of these
106.	The value of $(1 + i)^4 + (1 - i)^4$ is	373)
	(A) 8	(B) 4
	(C) = 8	(D) -4
107.	If α,β are the roots of the equation $x^2 + px$ equation	$\alpha + q = 0$, then $-\frac{1}{\alpha}$, $-\frac{1}{\beta}$ are the roots of the
	(A) $x^2 - px + q = 0$	
	(B) $x^2 + px + q = 0$	
	(C) $qx^2 + px + 1 = 0$	
	(D) $qx^2 - px + 1 = 0$	
	[15] [B. Tech/B.Pha	ar./B.PharAyur.]

108	. The	nui	mber of solutions of $x^2 + x - 1 = 1$ are	
	(A)			
	(C)	2		

109. If ${}^{k+5}P_{k+1} = \frac{11(k-1)}{2}$. ${}^{k+3}P_k$, then the values of k are

110. ${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5}$ is equal to

(A) 30

(B) 31

(C) 32

111. A student was asked to prove statement P(n) by induction. He proved P(k + 1) whenever P(k) is true for all k > 5 and also P(5) is true, on the basis of this he could contact that P(n) is true

(B) 1

(D) 3

(A) For all
$$n \in \mathbb{N}$$

(B) For all
$$n > 5$$

(C) For all
$$n \ge 5$$

(D) For all
$$n \le 5$$

112. The coefficient of $\frac{1}{x}$ in the expansion of $(1+x)^n \left\{1 + \frac{1}{x}\right\}^n$ is

(A) $\frac{n!}{\{(n-1)!(n+1)!\}}$

(B)
$$\frac{(2n)!}{\{(n-1)!(n+1)!\}}$$

(C)
$$\frac{(2n)!}{\{(2n-1)!(2n+1)!\}}$$

(D) none of these

113. $\lim_{x\to 0} \frac{(1-\cos 2x) \sin 5x}{x^2 \sin 3x}$ equals

(A)
$$\frac{10}{3}$$
 (B) $\frac{3}{10}$

114. $\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$ is equal to

(A)
$$\frac{\pi}{12}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$

(C) $\frac{6}{5}$

(D) $\frac{5}{6}$

115.
$$\int_0^1 \frac{d}{dx} \left\{ \sin^{-1} \frac{2x}{1 + x^2} \right\} dx$$
 is equal to

(B) π

- (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$

116. $\int_{1}^{3} \frac{3x+1}{x^{2}+9} dx$ equals

(A) $\frac{\pi}{12} + \log(2\sqrt{2})$

(B) $\frac{\pi}{2}$ + log(2 $\sqrt{2}$)

(C) $\frac{\pi}{6} + \log(2\sqrt{2})$

(D) $\frac{\pi}{3}$ + log(2 $\sqrt{2}$)

117. The probability of the student getting I, II and III division in an examination are $\frac{1}{10}$, $\frac{3}{5}$ and $\frac{1}{5}$ respectively. The probability that students fails in the examination is

(A) $\frac{197}{200}$

 $(B) \frac{27}{100}$

(C) $\frac{83}{100}$

(D) none of these

118. From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is

(A) $\frac{6}{25}$

(B) $\frac{1}{4}$

(C) $\frac{1}{6}$

(D) $\frac{2}{5}$

119. If two events are independent then

- they must be mutually exclusive
- the sum of third probability must be equal to 1 (B)
- (A) and (B) both are correct (6)
- none of the above is correct (D)

120. If $A = [a_{ij}]$ is a square matrix of even order such that $a_{ij} = i^2 - j^2$, then

- A is a skew-symmetric matrix and | A | = 0 (A)
- A is a symmetric matrix and | A | is a square (B)
- A is a symmetric matrix and |A| = 0
- none of these (D)

121. Let A be a m × n (m < n) matrix with ra	ank m. Then
(A) for every $b \in \mathbb{R}^m Ax = b$ has a u	nique solution
(B) for every $b \in \mathbb{R}^m$ Ax = b has a s	solution but it is not unique
(C) there exists $b \in \mathbb{R}^m$ for which A	x = b has no solution
(D) none of these	
122. The number of all possible matrices o	forder 3 x 3 with each entry 0 or 1 is
(A) 27	(B) 18
(<u>C</u>) 81	(D) 512
123. The relation R defined on the set $A = {$	$1,2,3,4,5$ } by R = {(a, b): $a^2 - b^2$ divides 16}
(A) $\{(1,1),(2,1),(3,1),(4,1),(2,3)\}$	
(B) $\{(2,2),(3,2),(4,2),(2,4)\}$	
(C) $\{(3,3),(4,3),(5,4),(3,4)\}$	
(D) none of these	
124. The relation R in $\mathbb{N} \times \mathbb{N}$ such that (a, b)	$R(c,d) \Leftrightarrow a+d=b+c$ is
(A) reflexive but not symmetric	. ((a, a) (a · a · b · c is
(B) reflexive and transitive but not s	symmetric
(C) an equivalence relation	
(D) none of these	
125. The maximum number of equivalence	relations on the set A = {1 2 3} is
(A) 1	(B) 2
(C) 3	(B) 2 (D) 5
126. The value of $\lim_{n\to 0} \left\{ \frac{1+2+3+4+5}{n+2} \right\}$	ey mutually exclusive
126. The value of $\lim_{n\to 0} \left\{ \frac{1+2+3+4+5}{n+2} \right\}$	$\frac{+ \dots n}{2}$ is
[11+2	termo i Ambo Br
(A) $\frac{1}{2}$	(B) 1
(C) -1	(B) 1 (D) $-\frac{1}{2}$
127. If n is a positive integer and $A = \begin{cases} \cos \theta \\ -\sin \theta \end{cases}$	$\begin{cases} \sin \theta \\ \cos \theta \end{cases}$, then A^n is equal to
(A) $\begin{cases} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{cases}$	(B) $\begin{cases} \cos \theta \\ \sin n\theta \\ -\cos n\theta \end{cases}$
(C) $ \begin{cases} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{cases} $	(D) none of these

$$\Delta = \begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{a} \mathbf{x} + \mathbf{b} \\ \mathbf{b} & \mathbf{c} & \mathbf{b} \mathbf{x} + \mathbf{c} \\ \mathbf{0} \end{vmatrix}$$

(A) positive

(B)
$$(ac - b^2)(ax^2 + 2bx + c)$$

(C) negative

(D) 0

(D) U

129. The value of the determinant $\begin{vmatrix} a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c \end{vmatrix}$ is

(A)
$$a^3 + b^3 + c^3$$

(B) 3bc

(C)
$$a^3 + b^3 + c^3 - 3ab$$

(D) none of these

130. The mean deviation of the series a, a+d, a+2d, a+3d, a+4d, ... a+2n from its mean is

(A)
$$\frac{(n+1)d}{2n+1}$$

(B)
$$\frac{nd}{2n+1}$$

(C)
$$\frac{n(n+1) d}{2n+1}$$

(D)
$$\frac{(2n+1) d}{n(n+1)}$$

131. If the standard deviation of a variable X is σ , then the standard deviation of variable $\frac{aX+b}{c}$ is

(B)
$$\frac{a}{c}\sigma$$

(C)
$$\left| \frac{a}{c} \sigma \right|$$

$$(D) \frac{a\sigma + b}{c}$$

132. Let $x_1, x_2,...,x_n$ be n observations. Let $y_i = ax_i + b$ for i = 1, 2, 3,...,n where a,b are constants. If the mean of $x_i's$ is 48 and their standard deviation is 12, the mean of $y_i's$ is 55 and standard deviation of y's is 15, then the values of a, b are

(A)
$$a = 1.25, b = -5$$

(B)
$$a = -1.25$$
, $b = 5$

(C)
$$a = 2.5, b = -5$$

(D)
$$a = 2.55, b = -5$$

[19] [B. Tech/B.Phar./B.Phar.-Ayur.]

133. The function $f(x) = \frac{x^3 + x^2 - 16x + 20}{x - 2}$ is not defined for x = 2. In order to make f(x) continuous at x = 2, f(2) should be defined as

(A) 0

(C) 2

134. If f(x) = 3x - 5, then $f^{-1}(x)$

- (5) 1 (D) 3 (A) (C) (A) is given by $\frac{1}{3x-5}$
- (B) is given by $\frac{x+5}{3}$
- (C) does not exist because f is not into
- (D) does not exist because f is not onto

135. The function
$$f(x) = \frac{4 - x^2}{4x - x^3}$$
 is

- discontinuous at only one point
- discontinuous exactly at two point
- discontinuous exactly at three point
- (D) none of these

136. The function $f(x) = \sin^{-1}(\cos x)$ is

- discontinuous at x = 0(A)
- (B) continuous at x = 0
- differentiable at x = 0
- none of these (D)

137. Let

$$f(x) = \begin{cases} ax^2 + 1, & x > 1 \\ x + \frac{1}{2} & x \le 1 \end{cases}$$

Then f(x) is derivable at x = 1, if

- (A) a = 2
- (B) a = 1
- (D) $a = \frac{1}{2}$

138. The set of points where the function f(x) given by $f(x) = |x-3| \cos x$ is differentiable are

(A) ℝ

(B) ℝ \{3}

(C) (0, ∞)

(D) none of these

[20] [B. Tech/B.Phar./B.Phar.-Ayur.]

139. The general solution of the differential equation e^x dy + (ye^x + 2x)dx = 0 is

(A)
$$xe^{y} + x^{2} = c$$

(B)
$$xe^{y} + y^{2} = c$$

(C)
$$ye^x + x^2 = c$$

(D)
$$ye^{y} + x^{2} = c$$

140. The integrating factor of the differential equation

$$(1 - y^2) \frac{dx}{dy} + yx = ay (-1 < y < 1)$$

is

(A)
$$\frac{1}{y^2 - 1}$$

(B)
$$\frac{1}{\sqrt{y^2-1}}$$

$$(C) \quad \frac{1}{1-y^2}$$

$$(D) \quad \frac{1}{\sqrt{1-y^2}}$$

141. Which of the following is a homogeneous differential equation?

(A)
$$(4x + 6y + 5)dy - (3y + 2x + 4)dx = 0$$

(B)
$$xydx - (x^3 + y^3)dy = 0$$

(C)
$$(x^3 + 2y^2)dx + 2xydy = 0$$

(D)
$$y^2dx + (x^2 - xy - y^2)dy = 0$$

142. If p and q are the order and degree of the differential equation

$$y\frac{dy}{dx} + x^3 \frac{d^2y}{dx^2} + xy = \cos x,$$

(A)
$$p < q$$

(B)
$$p = q$$

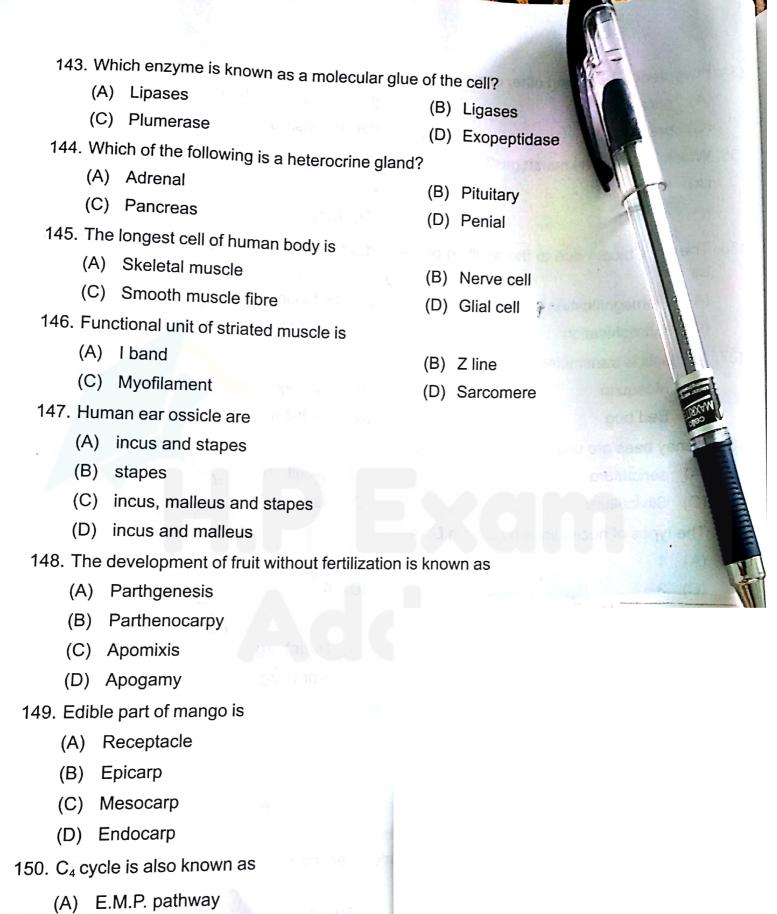
$$(C)$$
 $p > q$

(D) none of these

143. Integration factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is

144. In a regular hexagon ABCDEF, $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{a}$	b and CD = c, then AE equals
$(A) \vec{a} + \vec{b} + \vec{c}$	
(B) $2\vec{a} + \vec{b} + \vec{c}$	
(C) $\vec{b} + \vec{c}$	
(D) $\vec{a} + 2\vec{b} + 2\vec{c}$	
145. The vector $\cos \alpha \cos \beta \hat{i} + \cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{l}$	kisa
(A) null vector	
(B) unit vector	
(C) constant vector	
(D) none of these	
146. If ā and b̄ be two unit vectors and θ is the a if θ equals	ingle between them, then $\vec{a} + \vec{b}$ is a unit vecto
(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$ (D) $\frac{2\pi}{3}$
147. If $\sin \theta = \sin \alpha$, then the angle θ and α are related	ed by
(A) $\theta = n\pi \pm \alpha$	·
(B) $\theta = 2n\pi \pm \{-1\}^n \alpha$	
(C) $\theta = n\pi \pm (-1)^n \theta$	Cat .
(D) $\theta = (2n + 1)\pi + \alpha$	
148. The poles of the straight line ax + y - 28 = 0 wi	th respect to the circle $2x^2 + 2y^2 - 3x + 5y - 7 = 0$
(A) (3,1)	(B) (1, 3)
(C) $(3, -1)$	(D) (-3, 1)
149. $(\vec{a} + 2\vec{b} - \vec{c}) \cdot \{(\vec{a} - \vec{b}) \times (\vec{a} - \vec{b} - \vec{c})\}\$ is equal to	
(A) [ā b̄ c̄]	(B) 2[a b c]
(C) 3[ā b̄ c̄]	(D) 0
150. The points $(-a, -b)$, $(0, 0)$ and (a^2, ab) are	A service of the serv
(A) collinear	
(B) vertices of a rectangle	
(C) vertices of a parallogram	
(D) none of these	
COT TIONS OF FIRST	

BIOLOGY


101.	Most	unusual protist phyla is			
		coflagellates	- 1		
	(C)	choanonagenates		dinoflagellates	
102.	Alga	e have cell wall made up of	(D)	paraflagellates	
	(A)	Hemicellulose, pectins and proteins			
	(B)	Cellulose, galactans and mannans			
	(C)	Cellulose, hemicellulose and pectins			
	(D)	Pectins, cellulose and proteins			
103.	Whic	ch of the following is the amphibian of the	plan	t kinadom?	
	(A)	Pteridophytes	(B)	Bryophytes	
	(C)	Gymnosperms	(D)	Angiosperms	
104.	Whi	ch of the following is not a single flower?			
	(A)	China rose	(B)	Petunia	
	(C)	sunflower	(D)	holy hope	
105.	Can	al system is present in phylum:			
	(A)	Porifera	(B)	Cnidaria	
	(C)	Echinodermata	(D)	Protozoa	
106.	The	water of coconut is			
	(A)	Liquid mesocarp			
	(B)	Liquid endocarp			
	(C)	Degenerated liquid endosperm			
	(D)	Liquid nucellus		- 40	
107.	Roc	ot develops from which part of the germin	natin	g seed?	
	(A)	Cotyledons	(-	3) Radicle 3) Plumule	
	(C)	Pericaro	`)) Plumale	
108	Am	itosis is the usual process of cell division	n Lagrania		
	(A)	Meristematic cells			
	(B)	Prokaryotic cells			
	100	Eukaryotic cells			
	(0)	Coord mother cells			necessaries.

109.	Which of the following organelle is known as traffic police of the cell?						
	(A)	Golgi body	(B)	Mitochondria			
	(C)	Endoplasmic reticulum	(D)	Nucleus			
110.	Whi	ch of the following organelle is involved in	xen	obiotic detoxification?			
	(A)	Golgi		Lysosome			
	(C)	SER	(D)	RER			
111.	The	percentage of light absorbed by chloroph	ıyll fr	om total absorption is			
	(A)	12%		83%			
	(C)	96%	(D)	4%			
112.	Whi	ch of the following bacterium brings abou	t der	nitrification?			
	(A)	Pseudomonas	(B)	Rhizobium			
	(C)	Azotobacter	(D)	Nitrobacter			
113.	First	step in seed germination is					
	(A)	passing through gut of an animal					
	(B)	exploding along sutures					
	(C)	absorption of water					
	(D)	taking in of O ₂					
114.	In tis	ssue culture, low cytokinin to auxin ratio o	ause	es mye ate			
	(A)	Root differentiation					
	(B)	Shoot differentiation		.com			
	(C)	Both (A) and (B)					
	(D)	None of these					
115.	Whic	ch of the following is the non pathogenic b	acte	ria of colon?			
	(A)	Escherichia coli					
	(B)	Balantidium coli					
	(C)	Entamoeba histolytica					
	(D)	Enterobius vermicularis					
116.	The	process common to aerobic and anaero	bic r	espiration is			
	(A)	Oxidation					
	(B)	Glycolysis					
	(C)	Kreb's cycle					
		Electron transport chain					

	THE .				
117.	The	number of ATP molecules produced du	rina	acrobio I	
	(A)	andrespective	ly.	aeropic and	anaerobic respiration are
	(C)		(B)	0 and 2	
118		sound is produced during closure of	(D)	38 and 2	
710.	(A)	Semilunar valves			
	(B)	Bicuspid valve			
	(C)	Tricuspid valve			
	(D)	Both (B) and (C)			
119.	The	advanced feature of human evolution are)		
	(A)	Orthognathus face			
	(B)	Bipedal gait			
	(C)	High cranial capacity			
	(D)	All of the above			
120.	The	end product of ornithine cycle is			
	(A)	Ammonia	``	3) Urea	
	(- /	Uric acid	•	O) CO ₂	11:0
121.	Whi	ch of the following types of synovial join	s is	the most free	ely movable?
	(A)	Ball and Socket		B) Hinge	
	(C)	Saddle		D) Gliding	
122.	Mus	scles get fatigue due to accumulation of	,	D) ATD	
		Lactic acid	((B) ATP (D) Carbond	lioxide
		Phosphate molecules	. (3)	(D) Carbone	
123.		d spot does not contain		(D) Cones	n state in the spirit
	(A)	Rods		\ /	f the above
	(C)	- u and cones		2011	
104		tinism results due to			
124	. CIE	excess of adrenaline			
	0.52	thurovin			
	(B)	- inculin			
	(C)	Lorotin			
	(D)	lesser keratin			

120. 110	blorg throughouse blodnced in bollen sacs a	11600	alled
(A)	ovary	(B)	anther
(C)	stamen	(D)	carpel
126. Lar	ge amount of ovum is due to		
(A)	large sized nucleus		
(B)	Large amount of liquid in the cytoplasm		200 100
(C)	Large number of cells		
(D)	Large amount of reserve food		
127. The	secondary oocyte is		
(A)	Haploid	(B)	Diploid
· (C)	Monosomic	(D)	Polyspermic
128. ln m	nodern synthetic theory, the unit of evolution	on is:	
(A)	Genus	(B)	species
(C)	population	(D)	individual
129. The	cradle of human evolution is		
(A)	South Africa	(B)	North America
(C)	India	(D)	Germany
130. The	first civilized ancestor of modern man is		
(A)	Java ape man	(B)	Neanderthal man
(C)	Heidelburg man	(D)	Cro-magnon man
131. The t	erm 'survival of the fittest' was contribute	d by	no contraction
	Darwin		Wallace
()	Spencer	(D)	Lamarck
132. Homo	ologous organs are		
	similar in structure and function		
	similar in origin and different in functions	6	24 C
	Dissimilar in origin and similar in function		
\ /	dissimilar in origin and functions		annikese s
133. Apon			
	man made ecosystem	(B)	natural ecosystem
skabasa etalogoa, az		(D)	macro ecosystem
(C) b	piome		

134.	Food	derived by killing other organism				
	(A)	parasitism	(B) pr	otocooperation		
	(C)	predation		mensalism		
135.	Whic	ch is known as marsh gas?				
	(A)	H₂S	(B) C	0		
	(C)	SO ₂	(D) C	H ₄		
74 - 47 - 7	The as	algal bloom due to the addition of washe	ed off f	ertilizers in aquatic r	eservoir is	known
	(A)	Biomagnification	(B) b	iobloom		
	(C)	Eutrophication	, ,	lutrification		
137.	Filar	iasis is transmitte <mark>d</mark> by	,			
	(A)	Mosquito	(B) S	Sand fly		
	(C)	Bed bug	(D) 7	se tse fly		
138.	Hon	ey bees are used for				is.
	(A)	sericulture	(B) a	apiculture		
	(C)	Silviculture	(D),	Tissue culture		
139.	The	types of nucleotides present in DNA				
	(A)	1	(B)	2 all office has been se		
	(C)	3	(D)	4		1741
140.	The	term genetic code was given by				
	(A)	George Gamow		Nirenburg		
	(C)	Methai	(D)	Kornburg		
141.	The	transgenic animals are those which hav	'e			
	(A)	foreign DNA in some of their cells				
	(B)	foreign DNA in all of their cells				
	(C)	foreign RNA in some of their cells				
	(D)	Both (A) and (C)				1 - 11
142.	Whe	en the genotype of an organism is im	prove	d by the addition o	of foreign	genes. The
		ess is known as				14.
	(A)	Biotechnology	(B)		ng	
	(C)	Genetic drift	(D)	Genetic diversity		

(D) Pentose phosphate pathway For More Study Material Visit:- www.hpexamadda.in

[28] [B. Tech/B.Phar./B.Phar.-Ayur.]

(B) T.C.A. Cycle

(C) Hatch and slack cycle